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NUMERICAL STUDY OF STEADY-STATE REGIMES OF ROTATIONAL-GRAVITATIONAL 

CONVECTION 

N. V. Petrovskaya, A. K. Fadeev, and V. I. Yudovich UDC 532.5.013.4:536.252 

This article examines the problem of the two-dimensional convection of a viscous incom- 
pressible fluid in a rotating horizontal layer with free isothermal boundaries. Approximate 
solutions are sought by the Galerkin method. We numerically study stability and bifurcative 
steady-state solutions with a change in the Rayleigh number. The Galerkin method was used 
in [1-3] to perform calculations for the same problem (also see [4, 5]). In the present 
investigation, we study transitions in the class of steady-state solutions and calculate 
the corresponding bifurcative values of R. 

Results are presented for a Galerkin system of 62 equations. Equilibria are determined 
by Newton's method with continuation with respect to the parameter R. We find bifurcative 
values of R corresponding either to the generation of a pair of equilibria or a shift in 
the type of stability of the equilibrium. Using the results in [6], we fix the remaining 
parameters (Prandtl and Taylor numbers, wave number) so that the loss of stability of rela- 
tive mechanical equilibrium with an increase in R is monotonic. Here, secondary steady- 
state solutions branch into the subcritical region and are unstable. 

Nonetheless, we observed several branches of stable steady motion. These branches 
appear by different methods with a monotonic increase in R. Of particular interest is the 
following mechanism: the generation of a pair of unstable equilibria "from air" and their 
return to stability as a result of Andronov-Hopf bifurcation. 

i. Let a viscous heat-conducting fluid fill a horizontal layer of thickness H with 
nondeformable free boundaries. The temperatures on the lower and upper boundaries of the 
layer are T z and T2, respectively. In the main regime, the fluid rotates as a rigid body 
with the angular velocity ~ around the vertical axis. The motion of the fluid is described 
by the equations of free convection in the Oberbeck-Boussinesq approximation [7, 4]. We 
will ignore the centrifugal force. 

In a cartesian coordinate system (x, y, z) rotating together with the field, the fields 
of relative velocity v = (vz, v2, v 3) and temperature are assumed to be independent of the 
coordinate y. We introduce the stream function ~: v z = 8~/8z, v 3 = -8~/8x. The equations 
of motion have the following dimensionless form: 

aA~/at  ~ J(~, A~) § A~ + ~ a u / a z - - G a T / a x ,  

au/ot = J(~, ~) + Au - -  a~/~z, ~T/~ t  = J(~,  T) + Pr-~AT -- O~/~x. ( 1 . 1 )  

Rostov-on-Don. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
No. i, pp. 35-39, January-February, 1991. Original article submitted July 17, 1989. 

0021-8944/91/3201-0031512.50 �9 1991 Plenum Publishing Corporation 31 



Here, the chosen units of measurement for length, time t, velocity v, and the deviation of 
temperature from a linear profile T are H, Hg/v, v/H, TI - T2; v = v2/Re; Re = 2~H/v is the 
rotational Reynolds number; x = Re 2 is the Taylor number; G = g~H3(TI - T2)/~ 2 is the Grashof 
number; Pr = v/X is the Prandtl number; v, ~, and X are kinematic viscosity, the coefficient 
of thermal expansion, and diffusivity; g is acceleration due to gravity; J(~, e) = (3~/3x) x 
( ~ O / ~ z )  - ( a ~ / ~ z ) ( ~ e / a x ) .  

The following conditions are satisfied at the boundaries of the layer z = 0, i 

= 02~/Oz ~ = Ov/Oz = T = 0. ( 1 . 2 )  

The functions ~, v, T are assumed to be periodic with respect to x, having the period 
L = 2~/~0. By virtue of (1.2), they can be assumed to be determined over the entire (x, z) 
plane and periodic with respect to z. Here, the functions have the period 2. Meanwhile, 

~ ( x , - z ,  t ) = - ~ ( x ,  z, t), v ( x , - z ,  t ) =  v(x, z, t), 
T(x , - -z ,  t ) -=--T(x ,  z, t). (1.3) 

We limit ourselves to solutions which satisfy the additional symmetry conditions 

~p(--x, z, t ) - - - ---~(x,  z, t), v(--x ,  z, t ) = - - v ( x ,  z, t), 

T(--x ,  z, t) ---- T(x, z, t), (]..4) 

and are invariant under the transformation 

S: ( x , z ) ~ ( x  + L/2, z + t). ( 1 . 5 )  

By virtue of (i.3)-(1.4), periodicity conditions (1.5) are also equivalent to transforma- 
tion of :the central symmetry of the problem relative to the point (x0, z0), x0 = L/4, z 0 = 
1/2. 

2. We will apply the Galerkin method to problem (1.1)-(1.5). We seek approximate so- 
lutions in the form 

~p = ~ ~.,~ (t) exp (iaomx + ~nnz), 
W% ~'t% 

v = ~] vmn (t) exp (i(zomx + i~nz), T = ~, Tm.(t) exp (i~zomx + i~nz), ( 2 . 1 )  

where summation is performed over a certain finite set M of pairs of nonnegative integers: 

([ml, [n[) ~ M. 

Due to conditions (1.3), (1.4) and the fact that the functions ~, v, and T are real, 
the Galerkin coefficients ~mn, Vmn, and Tmn are also real. In this case, 

~m,-~  = - - ~ ,  v~ ,_~  = v ~ ,  T~,_~ = - - T ~ ;  ( 2 . 2 )  

~-m,~ = . ~ ,  v_~,~ = - - v ~ ,  T-m,~ = r ~ .  ( 2 . 3 )  

I t  f o l l o w s  f r o m  t h e  i n v a r i a n c e  o f  t h e  s o l u t i o n s  r e l a t i v e  t o  t r a n s f o r m a t i o n  ( 1 . 5 )  t h a t  

~mn = Umn = Tmn = 0,,if m + n are odd. (2.4) 

Thus, Fourier series (2.1) represent expansions of the functions ~, v, and T in the 
harmonics sin(m~0x)sin(n~z), sin(ma0x)cos(n~z), cos(ma0x)sin(n~z), respectively, written 
in complex form. 

A system of differential equations for finding ~mn(t), Vmn(t), and Tmn(t) was constructed 
in [8]. It should be noted that it is invariant under the transformation 

]: (~v~n Tm~) ((--1)~r (--I) ~), (2.5) 

corresponding to the shift of the coordinates x ~ x + L/2. This system is also dissipative 
if as M we choose any value from the sets (N = i, 2, 3 .... ) M N = {(m, n): m + n 5 2N, m + 
n even} U {(2k, 0): k E 2N - i} U {(0, 2k): k ~ 2N - 1}. 
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3. We calculated steady-state solutions for a system of 62 Galerkin equations with 
M = M 4 with allowance for (2.2)-(2.4). It should be noted that, in the case of a nonrotating 
fluid, this is sufficient for qualitatively accurate reproduction of the bifurcative diagram 
of the complete Boussinesq equations in the investigated region of parameters [9]. 

The equilibria of the Galerkin system were calculated by Newton's method with continu- 
ation with respect to a certain parameter - the Rayleigh number R = Pr'G. We constructed 
equilibrium curves in the direct product of the phase space of the system and the axis of 
values of R. The remaining parameters of the problem were fixed: Pr = 0.05; �9 = 4; s 0 = 
7/4. Stability of the equilibria was determined from the spectrum of the matrix of the 
linear system for perturbations. We sought bifurcative values of R corresponding to the 
generation of a pair of equilibria or a change in the type of stability of equilibrium. The 
corresponding branch points divide the curve of equilibria into separate sections - branches 
of equilibria. 

The results are shown in Figs. 1-3. The Galerkin coefficients T02 and ~il are plotted 
off the vertical axis, while the Eayleigh number is plotted off the horizontal axis. The 
figure was not drawn to scale in order to make the results clearer. Only the mutual loca- 
tion of the equilibrium branches remain the same. We calculated the following bifurcative 
values of R for all of the points: 667.7 (A), 665.0 (B), 20,480 (C), 73,690 (D), 795.7 (E), 
1550 (F), 175,000 (G), 19,680 (H), 450,000 (K), 57,500 (L), 1051.5 (M), 1054.1 (N), 1933.4 
(P), I080 (O), 1070 (R), 1800 (S), 1939.4 (T), 1580.8 (U). 

3.1. The losses of stability of the main regime of motion (rigid-body rotation of the 
fluid) with an increase in R may be monotonic or oscillatory [4, 7]. At the chosen Pr, ~, 
and s0, the loss of stability is monotonic. 

For normal perturbations, dependent on (x, z) through the multiplier exp(im~0x + in,z), 
the critical values of R associated with monotonic instability are determined by the equality 

R~,~(~o, ~)= [(~ + ~)~ + ~]/(~o)~. (3. ~) 

At s 0 = ~/4 (corresponding approximately to the minimum of the critical R3,1) and T = 4, we 
find from (3.1) that R3, I = 667.7; Rs, I = 1051.5; RI, I = 1933.4. If R < R3,1, then the main 
regime of motion is stable. When R, undergoing an increase, passes through the critical 
Rm, n, a pair of secondary steady-state solutions branches off from the main solution. They 
correspond to motions of the fluid which are periodic along x and z with the wave numbers 

= m~ 0 and 7 = n~, and they change into one another with the shift x ~ x + ~/~. The corre- 
sponding equilibria of the Galerkin system belongs to the invariant subspace Pm,n, in which 
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all of the Galerkin coefficients except ~km,s Vkm,s Tkm,s V2km, 0, T0,2s are equal to 
zero (here, k and s are natural numbers). The shift x ~ x + ~/~ establishes a transforma- 
tion of the coordinates Jm,n on Pm,n which is analogous to (2.5). Meanwhile, J1,1 = J. The 
equilibria generated at R = Rm, n are converted to one another by the transformation of Jm,n. 
We will henceforth use Om, n to denote those equilibria corresponding to a positive value of 

~mn. 

At R = R3, I and R = Rl, I, secondary equilibria branch into the subcritical region. At 
R = Rs,l, they branch into the supercritical region; all of them are unstable. Neverthe- 
less, we observed several branches of stable equilibria in our calculations (see below). 

In the figures, AB, MN, and PQ represent branches of secondary equilibria 03 i, 05 i, 
and 01, I . The lines with the points A, B, C, and L (in Fig. i) and M, N, and V (~n Figs. 2 
and 3) correspond to equilibria for invariant subspaces P3,1 and P5,1, respectively. All 
of the other lines correspond to equilibria for which the phase coordinates are generally 
nontrivial. 

3.2. The generation of stable equilibria is associated with loss of stability of the 
main regime of motion at R = R3, I. The solid line shows the branches of these equilibria 
in Fig. i, while the dashed line shows the unstable branches. The letters denote the branch 
points of the equilibria. The values of R which correspond to them were indicated above. 
Indicated in Fig. 1 for each branch is the number of characteristic equilibrium numbers ly- 
ing to the right of the imaginary axis: 1 (AB), 0 (BC), 1 (CL), 0 (CD), 1 (ED), 2 (EF), 
0 (FG), i (HC), 0 (HK), i (MN), i (NQ), 3 (PQ), i (NR), 3 (RS), 1 (ST), 2 (TU). 

At point A, the main regime becomes unstable when R = R3, I. Unstable secondary equi- 
libria 03, I branch into the subcritical region (branch AB). With an increase in R, a pair 
of steady-state solutions (point B) materializes "from air." One of them (branch BC) is 
stable. These equilibria become unstable at point C as a result of bilateral bifurcation 
(the simple characteristic number of the equilibrium passes through zero). Here, new equi- 
libria (branch CD) inherit the stability of branch BC; the equilibria of the old branch re- 
main stable in the subspace P3,1. The type of stability of the equilibrium changes at point 
L as a result of bifurcation of the origination of the limit cycle. 

The bifurcative generation of a pair of equilibria "from air" is also seen at point H. 
The equilibria of the branch HK are stable. Their loss of stability at point K is oscilla- 
tory and is accompanied by the origination of the limit cycle. 

The stable equilibria of branch FG arise with an increase in R as a result of two suc- 
cessive bifurcations. First a pair of unstable equilibria arise at point E "from air." The 
equilibria of branch EF have two positive characteristic numbers. These equilibria subse- 
quently merge and form a complex-conjugate pair. They return to the left half-plane at point 
F. The loss of stability by the equilibria at point G also occurs as a result of bifurcative 
formation of the limit cycle. 

3,3. Subsequent bifurcations of the main regime of motion generate only unstable equi- 
libria. The results of calculation of these equilibria are shown in Figs. 2 and 3, where 
the notation is the same as in Fig. i. Points M and P correspond to the critical values R = 
Rs, I and R = R1,1, while branches MN and PQ correspond to secondary equilibria O5,1 and O1,1. 
Of interest is the branch point N, at which the equilibria 05, I have a simple zero charac- 
teristic number. At this point, a pair of equilibria not belonging to Ps,l branch off from 
02, I , lying in the invariant half-space Ps,1- The branch NQ at point Q joins with the branch 
of secondary equilibria PQ. It should be noted that the equilibria belonging to Ps,1 are 
projected on the axis ~i,~ = 0 in Fig. 3. 

We also observed other equilibrium branch points in the calculations. In particular, 
the points Q, R, and S correspond to bifurcative formation of the limit cycle, while points 
T and U correspond to bifurcative generation and disappearance of a pair of equilibria. How- 
ever, none of these transitions leads to the formation of stable equilibria. 

4. Let us form the main conclusions from our study. Within the range of parameters 
investigated in the phase space of the given system, there are a fairly large number of 
equilibria with different wave numbers that are multiples of s0. In particular, four 
branches of stable equilibria are seen. 

The paths by which stable equilibria originate also differ with a monotonic increase 
in R. They can arise together with unstable equilibria in the bifurcative formation of a 
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pair of equilibria "from air." They can form from an unstable equilibrium as a result of 
bifurcation of the limit cycle. Finally, they can also occur in the case of bilateral bi- 
furcation, associated with an exchange of stability between two equilibria - one inside the 
invariant subspace and one outside it. 
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USE OF A THREE-COMPONENT MODEL TO COMPUTE GAS SUSPENSION FLOW 

AND RAREFIED FLOW OVER BODIES 

N. Zh. Dzhaichibekov and S. K. Matveev UDC 533.6.01 

A 4-component model to describe flow of a suspension (gas with solid particles) over 
bodies is proposed in [i]. The suspension is a mixture of four components: carrier gas 
and three kinds of particles, which do not collide with incident s particles, orderly moving 
reflected r particles, and randomly moving t particles. It is postulated that any two col- 
liding particles (only pair collisions are considered) occur in type t. The particles are 
assumed to be identical spheres whose diameter d o is much less than the characteristic body 
dimension, while the density P0 is much larger than that of the gas. The velocity distribu- 
tion of the t particles is assumed to be nearly Maxwellian, and for the t component we use 
certain results of kinetic theory obtained for a gas consisting of spherical molecules. 
Here we neglect the influence of resistance of the carrier gas and the possible inelasticity 
of collisions on the form of the formulas for flux of mass, momentum, and energy. These 
factors are accounted for in computing the kinetic energy of random motion of particles Ut, 
determined from the balance equation, which has terms describing dissipation of this energy 
due to the above causes. 

The hypotheses listed, described in detail in [i], lack a rigorous basis, but with them 
we can construct a rather simple suspension model accounting for random motion of particles, 
and correctly describing the screening influence of reflected particles, as shown by compar- 
ing the computations of [2] with experimental data [3]. 
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